Caractérisation des lésions hépatiques focales sur des acquisitions scanner multiphasiques

Auréline Quatrehomme^{1,2}

Rapporteurs : Frédéric Precioso et Christian Roux Examinateurs : Khalifa Djemal et Gilles Gesquière Encadrants : Denis Hoa¹, William Puech², Gérard Subsol²

¹ IMAIOS www.imaios.com
 ² LIRMM / Université Montpellier II / CNRS

Contexte industriel Introduction

Images: 119 Anatomical parts: 690 Section: Limbs

Dr Michelangelo Scopelliti -24/09/2012 Palermo, ITALY 150 images in 6 series Section: Brain

anatomy on IPhone - IPad - Androïd

www.imaios.com

Introduction Contexte industriel

Diagnostic Assisté par Ordinateur (DAO)

L'utilisateur

- définit la zone d'intérêt
- interroge la base de données d'Imaios
- reçoit des informations

Les lésions hépatiques Pourquoi ? Notamment car le cancer du foie tue...

- 5^{ème} cancer au monde chez les hommes, 7^{ème} chez les femmes
- 3^{ème} cause de mortalité par le cancer
- Cancer primaire fatal dans 93% des cas

Nombre important de types de lésions hépatiques, difficiles à distinguer

Introduction

Comment ?

1. Construction une base de données

- 2. Emploi d'algorithmes de classification
- 3. Proposition de descripteurs visuels

4. Exploitation de séries d'images

Introduction Plan de la présentation

- 1. Construction de la base de données
- 2. Analyse des descripteurs visuels dans des examens monophasiques
- 3. Classification sur des examens multiphasiques
- 4. Intégration de nouveaux descripteurs
- 5. Bilan & perspectives

Tomodensitométrie

Données

Tomodensitométrie X (TDM) ou scanographie

- Même principe que la radiologie classique
- Les tissus absorbent le faisceau de manière différente selon leur composition
- <u>Examen de prédilection pour le foie</u>

Données Tomodensitométrie

Tomodensitométrie multiphasique

Tomodensitométrie multiphasique

Phase 2

Phase 4

Bases de données

Examens scanner multiphasiques

- Analyse rétrospective de cas [2008 2011]
- 37 patients adultes [28 82 ans]
 - 2 scanners GE Healthcare Lightspeed : VCT & Ultra
- Radiologues différents
- Epaisseur de coupe [1,25 5,00 mm]

Protocole

Zone manuelle rectangulaire

Extraction automatique de l'ellipse incluse

1 lésion \Leftrightarrow **4** zones (1 par phase)

Bases de données

	Sain	Lésions non cancéreuses					Lésions cancéreuses		
	Sain Foie sain	Abc. Abcès	Adé. ^{Adénome}	Ang. Angiome	HNF Hyperplasie Nodulaire Focale	Kys. Kyste	CHC Carcinome HépatoCellulaire	Mét. Métastase	
1 pré- injection									
2 artérielle				68					
3 portale			题	×.		0			
4 tardive									
Base 1	-	6	10	9	6	25	13	38	
Base 2	37	6 - 12 6 11 12 16							
E	Base 1 : Base 2 :	107 lésio 100 lésio	ons de 33 ons de 37	patients o patients o	lifférents - lifférents -	- 7 class - 7 class	ies ies		

Données Discussion

Constitution d'une base de données

- Processus complexe
- Prend du temps
- Travail collaboratif avec des radiologues

Notre base contient :

- Une centaine de lésions hépatiques
- Un nombre élevé de pathologies
- Des acquisitions scanner multiphasiques

- 1. Construction de la base de données
- 2. Analyse des descripteurs visuels dans des examens monophasiques
- 3. Classification sur des examens multiphasiques
- 4. Proposition de nouveaux descripteurs
- 5. Bilan & perspectives

Travaux existants

Bibliographie (acquisitions monophasiques)

Chen et al.	An automatic diagnostic system for CT liver image classification	1998
Huang, Chen & Shen	Diagnosis of hepatic tumors with texture analysis in nonenhanced computed tomography images.	2006
Kumar et al.	Diagnosis of Liver Tumor from CT Images using Curvelet Transform An automatic computer-aided diagnosis systemfor liver tumours on computed tomography images	2010, 2013
Adcock, Rubin & Carlson	Classification of Hepatic Lesions using the Matching Metric	2012
Bilello <i>et al.</i>	Automatic detection and classification of hypodense hepatic lesions on contrast enhanced venous-phase CT.	2004
Sadfari et al.	Image patch-based method for automated classification and detection of focal liver lesions on CT	2013
Wang et al.	Classification of Hepatic Tissues from CT Images Based on Texture Features and Multiclass Support Vector Machines	2009
Mougiakakou	Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers	2007

Analyse des descripteurs

Travaux existants

Types de lésions	foie sain, kystes, angiomes, CHC et métastases
Objectif	classification tri-classe ou binaire (sain / pathologique ou bénin / malin) le plus souvent
Effectif des bases de données	[50 – 200]
Etape facultative	segmentation du foie ou de la lésion
Descripteurs	 <u>Généralement :</u> Statistiques sur l'histogramme des niveaux de gris <u>Descripteurs de texture classiques :</u> Statistiques extraites de la matrice de co-occurrence ou consoeurs Descripteurs de Law <u>Mais aussi :</u> Auto-covariance, fractales, ondelettes et dérivées, filtres de Gaussiennes, méthode des codes-barres, bag-of-words
Algorithme de classification	Machines à Vecteur de Support et réseaux de neurones
Evaluation de la classification	Validation croisée, voire Leave One Out

Analyse des descripteurs

Base de données

	Sain	Lésions non cancéreuses					Lésions cancéreuses	
	Sain	Abc.	Adé.	Ang.	HNF	Kys.	СНС	Mét.
1 pré- injection								
2 artérielle								
3 portale				¥.		0		
4 tardive						0		
Base 1	-	6	10	13	38			
Base 2	37	6	-	12	6	11	12	16

Base 1 : 107 lésions de 33 patients différents – 7 classes Base 2 : 100 lésions de 37 patients différents – 7 classes

Analyse des descripteurs Méthode

Analyse des descripteurs

Descripteurs visuels

Stats histo-	Haralick	Law	GMRF
gramme (4 mesures)	(9 mesures statistiques sur 4 directions)	(2 mesures statistiques sur 14 images d'énergie)	(4 mesures)

72 attributs

Analyse des descripteurs Algorithme de classification

Support Vector Machine (SVM)

Allons dans un espace de dimension supérieure !

Implémentation: Sequential Minimal Optimization ^[1]

Paramètres : Noyau polynomial, exposant 1.

1 Platt J., Fast Training of Support Vector Machines Using Sequential Minimal Optimization, Advances in Kernel Methods -Support Vector Learning, MIT Press 2007

Analyse des descripteurs **Evaluation**

Validation croisée «Leave One Out »

n lésions

Leave One Out (LOO)

1 lésion de test *n*-1 lésions pour l'apprentissage

Exhaustive: *n* partitionnements différents

Validation croisée

 Séparer la base de données en 2 ensembles : apprentissage et test

2. Lancer la classification et évaluer les résultats

3. Aller en *1.* et recommencer pour différents partitionnements

Analyse des descripteurs

Premiers résultats

MATRICE DE CONFUSION										
Etiquettes Lésions	Abc.	Ade.	Kys.	HNF	Ang.	СНС	Mét.			
Abcès	2	0	1	1	1	1	0			
Adénome	0	10	0	0	0	0	0			
Kyste	0	1	23	0	0	0	1			
HNF	0	0	0	0	2	0	4			
Angiome	3	1	0	2	2	0	1			
СНС	1	2	0	0	0	3	7			
Métastase	4	2	3	1	2	2	24			

Instances correctement étiquetées : 64 / 107 (59,81%) Précision totale moyenne de classification : 0,56

Problématique du temps de calcul

Temps de calcul de l'ensemble A : plusieurs heures pour notre base dont 99,2% consacré aux descripteurs d'Haralick !

2 voies possibles pour le réduire :

Analyse des

descripteurs

- Optimisation du calcul => parallélisme
- Approximation de la matrice => <u>histogrammes d'Unser *</u>

* M. Unser : Sum and Difference Histograms for Texture Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):118 – 125, 1986.

Analyse des descripteurs

Problématique du temps de calcul

Example basique : distance de 1 pixel à droite sur l'axe horizontal

IMAIOS

Unser 🗇 approximation des descripteurs d'Haralick : Beaucoup plus rapide

Somme

Histogrammes Somme & Différence

Extraction de mesures statistiques

Analyse des descripteurs Problématique du temps de calcul

ENSEMBLE DE DESCRIPTEURS	Haralick	Haralick parallélisé	Unser
TEMPS DE CALCUL	Plusieurs heures	111 minutes	< 3 minutes
INSTANCES CORRECTEMENT ETIQUETEES	67,2	29 %	68,22 %

Validation du remplacement des descripteurs d'Haralick par ceux d'Unser

 Système de caractérisation des lésions du foie s'appuyant sur l'état de l'art

- Remplacement des descripteurs d'Haralick par ceux d'Unser
 - Temps de calcul acceptable
 - Résultats comparables de classification
- Résultats insatisfaisants en l'état

- 1. Construction de la base de données
- 2. Analyse des descripteurs visuels dans des examens monophasiques
- 3. Classification sur des examens multiphasiques
- 4. Proposition de nouveaux descripteurs
- 5. Bilan & perspectives

 Projet 1: D. Duda, M. Kretowski et J. Bezy-Wendling : Texture Characterization for Hepatic Tumor Recognition in Multiphase CT. *Biocybernetics and Biomedical Engineering*, 26 (4), pages 15–24, 2006.

Projet 2 regroupant plusieurs articles :

- J. Ye, Y. Sun et S. Wang : Multi-Phase CT Image Based Hepatic Lesion Diagnosis by SVM. *In* 2nd International Conference on Biomedical Engineering and Informatics, pages 1–5, 2009
- S. W. Shuqin, Y. Sun, Q. Weng, J. Ye, L. Gu, L. Qian et J. Xu : Improvement of Feature Selection in Multi-phase CT Images of Hepatic Lesions. *In Proceedings of the 2009 International Symposium on Bioelectronics and Bioinformatics*, pages 72–75, 2009.
- S. Su et Y. Sun : Key techniques research in computer-aided hepatic lesion diagnosis system based on multi-phase CT images. *In Image and Signal Processing (CISP), 2011 4th International Congress on,* volume 4, pages 1921–1927, 2011.

- Bases de données de petite taille / patients redondants
- Faible nombre de classes différenciées (3 ou 4)
- Algorithmes classiques de classification
- Descripteurs visuels classiques, sauf les mesures temporelles provenant des études IRM 1,2

1 V.A. Arasu, R.C., Chen, D.N. Newitt, C.B. Chang, H. Tso, N.M. Hylton et B.N. Joe : Can signal enhancement ratio (SER) reduce the number of recommended biopsies without affecting cancer yield in occult MRI-detected lesions ? *Acad Radiology*, 18(6): 716–721, 2011.

2 S. Yamazoe, T. Takahara, K. Shimizu K, K. Ouchi, T. Mogami, J. Harada et K. Fukuda : Diffusion-weighted imaging with relative signal intensity statistical thresholding for delineating prostate cancer tumors. *Magnetic Resonance in Medical Science*, 11(1):1–8, 2012.

Examens multiphasiques

Base de données

	Sain	Lésions non cancéreuses					Lésions cancéreuses	
	Sain	Abc.	Adé.	Ang.	HNF	Kys.	СНС	Mét.
1 pré- injection						0		
2 artérielle						0		
3 portale				1		0		
4 tardive			1			0		
Base 1	-	6	10	9	6	25	13	38
Base 2	37	6	-	12	6	11	12	16

Base 1 : 107 lésions de 33 patients différents – 7 classes Base 2 : 100 lésions de 37 patients différents – 7 classes

Analyse des descripteurs Méthode

4 séries de coupes

Vecteur de mesures

Phase 1 Phase 2 **HISTO HISTO** GRAM UNSER LAW MARKOV GRAM LAW MARKOV ME 72 attributs Phase 3 Phase 4 **HISTO HISTO** UNSER LAW MARKOV GRAM UNSER LAW MARKOV GRAM ME ME

TOTAL: 288 attributs

Examens

multiphasiques

Examens multiphasiques

Résultats

PHASE PORTALE										
	Abc Adé Kys HNF Ang CHC Mé									
Abc	2	0	1	1	1	1	0			
Adé	0	10	0	0	0	0	0			
Kys	0	1	23	0	0	0	1			
HNF	0	0	0	0	2	0	4			
Ang	3	1	0	2	2	0	1			
CHC	1	2	0	0	0	3	7			
Mét	4	2	3	1	2	2	24			

Réussite : 64 / 107 (59,81%)

Réussite : 73 / 107 (68,22%)

Andicodtiong boldesta breesastades: HNF:

Influence positive sur les angiomes et les CHC. (hypervasculaires)
 Somaspectasisue per mes parable d'elle peut ressemble aux autres types de lésions !
 Stabilité sur les autres classes

Examens multiphasiques

Comparaison avec les experts

Comparaison avec les experts

$s = \frac{2|X \cap Y|}{|X| + |Y|}$

COMPARAISON DES RESULTATS SUR DU MULTIPHASE

Classe	Effoctif	Succès	Coeff. de	
Classe	Enectii	Experts	Outil	Dice
Abcès	6	1	1	0,000
Adénome	10	0	9	0,000
Kyste	25	25	24	0,958
HNF	6	1	1	0,000
Angiome	9	7	7	0,667
СНС	13	0	6	0,000
Métastase	38	17	25	0,468
TOTAL	107	51	73	0,618

Les mêmes tendances

Examens

multiphasiques

- Introduction d'examens multiphasiques
- Résultats de classification améliorés
- Comparaison avec les experts

- 1. Construction de la base de données
- 2. Analyse des descripteurs visuels dans des examens monophasiques
- 3. Classification sur des examens multiphasiques
- 4. Proposition de nouveaux descripteurs
- 5. Bilan & perspectives

Rappel : Base de données

	Sain		Lésions non cancéreuses					Lésions cancéreuses	
	Sain	Abc.	Adé.	Ang.	HNF	Kys.	СНС	Mét.	
1 pré- injection						0			
2 artérielle						0			
3 portale			题	1		0			
4 tardive			1			0			
Base 1	-	6	10	9	6	25	13	38	
Base 2	37	6	-	12	6	11	12	16	

Base 1 : 107 lésions de 33 patients différents – 7 classes Base 2 : 100 lésions de 37 patients différents – 7 classes

IMAIOS

Profils temporels et normalisation

Moyennes des niveaux de gris par classe et phase

IMAIOS

Profils temporels et normalisation

Rappel : Descripteurs visuels

Ensemble B de descripteurs visuels

Précision totale de classification sur la Base de données 2 normalisée : 0,754

Descripteurs temporels

- Variation des niveaux de gris entre 2 phases :
 3 descripteurs <> une étiquette : stable, -, --, --, +, ++, +++
- Descripteurs issus de travaux sur l'IRM
 4 descripteurs ⇔ Intensité Relative du Signal entre les phases
 (3 valeurs) et Ratio du Réhaussement du Signal

→ Mauvais résultats de classification seuls

Cartes de densité : principe

Carte représentant pour chaque pixel de la lésion sa densité par rapport au foie sain.

Zones noires : hypodenses

Zones grises : isodenses

Zones blanches : hyperdenses

Cartes de densité : mesures

Répartition des zones de densité au cours des phases.

Sur chaque phase : pourcentages d'occupation des 3 zones

⇒ 12 mesures

Cartes de densité : résultats

MATRICE DE CONFUSION										
Etiquettes LésionsSainAng.Abc.KysteHNFCHCMét										
Sain	37	0	0	0	0	0	0			
Angiome	0	9	0	2	0	1	0			
Abcès	0	1	0	1	0	4	0			
Kyste	0	0	0	9	0	1	1			
HNF	0	2	0	2	0	2	0			
СНС	0	1	1	0	0	10	0			
Métastase	3	0	0	0	0	0	13			

Instances correctement étiquetées : 78 / 100 (78%) / précision 0,711

Cartes de densité : discussion

- Précision à peine plus faible que l'Ensemble B
- Avantages : Seulement 12 valeurs rapides à calculer
- Limites : Elles ne permettent pas de mieux caractériser les abcès et les HNF

- Ensemble de départ = 312 mesures :
 Ensemble B + profils temporels + cartes de densité + descripteurs IRM
- Sous-ensemble sélectionné = 220 mesures :
 - Ensemble B : toutes celles de Law, certaines d'Unser et stats sur l'histogramme
 - Descripteurs temporels : toutes
 - Cartes de densité : toutes
 - Descripteurs IRM : 3 mesures d'Intensité Relative du Signal
- Influence sur la précision totale de classification :

Ensemble B	Profils	IRM	Cartes	Tout	Sélection
<u>0,754</u>	0,123	0,137	<u>0,711</u>	<u>0,758</u>	0,760

Huan Liu; Setiono, R., "Chi2: feature selection and discretization of numeric attributes", Seventh International Conference on Tools with Artificial Intelligence, vol., no., pp.388,391, 5-8 Nov 1995

- 1. Construction de la base de données
- 2. Analyse des descripteurs visuels dans des examens monophasiques
- 3. Classification sur des examens multiphasiques
- 4. Proposition de nouveaux descripteurs
- 5. Bilan & perspectives

Conclusion Contributions

Construction d'une base de données

- 100 lésions du foie
- Images scanner multiphasiques
- Nombre de classes élevé (7)

- Application de descripteurs visuels et d'un algorithme de classification de l'état de l'art [A. Quatrehomme et al., MIAD 2012]
- Optimisation du temps de calcul (approche parallèle et histogrammes d'Unser) [A. Quatrehomme et al., MICCAI 2012]

Conclusion Contributions

Validation de l'approche multiphasique

[A. Quatrehomme et al., EUSIPCO 2013]

- Par les résultats de classification
- Par la comparaison avec des experts
- Proposition de nouveaux descripteurs
 - Réhaussement temporel des lésions
 - Cartes de densité (Score équivalent avec seulement 12 valeurs)

Conclusion Contributions

- Outils informatiques pour la Recherche & Développement au sein de la société IMAIOS
 - Prototype de caractérisation de lésions
 - Prototype de démonstration d'un outil de recherche par le contenu

Conclusion limi

Limitations

- L'effectif de la base de données reste à augmenter
- Certaines classes (abcès et HNF) obtiennent de mauvais résultats de caractérisation

Conclusion Perspectives

Descripteurs visuels s'appuyant sur les informations cliniques

détection de la cicatrice centrale des HNF ou de la couronne d'inflammation des abcès

Descripteurs extraits des images radiales

Conclusion Perspectives

- Exploration d'autres méthodes de classification
 - Méta-classifieurs
 - Autres objectifs de classification (reconnaissance, classe rejet...)
- Introduction d'informations sémantiques en vue d'un système hybride

Thèse CIFRE démarrée en novembre 2013 au sein d'IMAIOS

Autres applications

Conclusion Publications

- A. Quatrehomme, I. Millet, D. Hoa, G. Subsol et W. Puech : Assessment of an Automatic System Classifying Hepatic Lesions on Multi-Phase CT Scan Images, EUSIPCO 21st European Signal Processing Conference, Marrakech (Maroc), 2013.
- A. Quatrehomme, I. Millet, D. Hoa, G. Subsol et W. Puech : Assessing the Classification of Liver Focal Lesions by Using Multi-phase Computer Tomography scans, Third MICCAI International Workshop on Medical Content-based Retrieval for Clinical Decision Support, Lecture Notes in Computer Science 7723, pages 80-91, Springer, Nice (France), 2012.
- A. Quatrehomme, D. Hoa, G. Subsol et W. Puech : Content-based Computer Tomography Image Retrieval on a Whole-body Anatomical Reference Set: Methods and Preliminary Results, 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems, Rome (Italie), 2011.
- A. Quatrehomme, D. Hoa, G. Subsol et W. Puech : **Review of Features Used in Recent Content-Based Radiology Image Retrieval Systems**, *Third International Workshop on Image Analysis*, Nîmes (France), 2010.

Conclusion

Merci de votre attention

Haralick & Unser

- Unser propose une approximation de la matrice de co-occurrence
- La fonction de probabilité jointe est remplacée par le produit des fonctions de probabilité de 1^{er} ordre suivant les principaux axes
- Les résultats de classification sont stables
 - Sur les textures de Brodatz *

Questions

- Sur les lésions de notre base de données

* M. Unser : Sum and Difference Histograms for Texture Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):118 – 125, 1986.

Questions Algorithme du χ^2 pour la sélection

1. Phase 1 : Détermination d'un seuil en fonction des données

2. *Phase* **2** :

- Tri des attributs selon leurs valeurs
- Calcul de la valeur du χ^2 pour chaque paire d'intervalles adjacents
- Fusion de toutes les paires ayant une valeur inférieure au seuil
- Le processus est répété avec un seuil décroissant jusqu'à l'arrêt

Huan Liu; Setiono, R., "Chi2: feature selection and discretization of numeric attributes", Seventh International Conference on Tools with Artificial Intelligence, vol., no., pp.388,391, 5-8 Nov 1995

